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Multiply By To obtain
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inch 2.54 centimeter (cm)
inch 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
mile, nautical (nmi) 1.852 kilometer (km)
yard (yd) 0.9144 meter (m)

Volume per unit time (includes flow)

cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
gallon per minute (gal/min) 0.06309 liter per second

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F = (1.8 × °C) + 32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C = (°F – 32) / 1.8

Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929 
(NGVD 29).

Horizontal coordinate information is referenced to North American Datum of 1983 (NAD 83).
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Stream Base Flow and Potentiometric Surface 
of the Upper Floridan Aquifer in South-Central 
and Southwestern Georgia, November 2008

By Debbie W. Gordon and Michael F. Peck

Abstract
An investigation to document groundwater levels and 

stream base flow in the lower Chattahoochee–Flint and 
western and central Aucilla–Suwanee–Ochlockonee River 
basins during low-flow conditions was conducted by the U.S. 
Geological Survey in November 2008. During most of 2008, 
moderate to severe drought conditions prevailed throughout 
southwestern Georgia. Groundwater levels were below median 
daily levels throughout most of 2008; however, in some wells, 
groundwater levels rose to median daily levels by November. 
Discharge in most of the streams in the study area also had 
risen to median levels by November. 

The potentiometric surface of the Upper Floridan aquifer 
was constructed from water-level measurements collected in 
21 counties from 376 wells during November 1–10, 2008. The 
potentiometric surface indicates that groundwater in the study 
area generally flows to the south and toward streams except 
in reaches discharging to the Upper Floridan aquifer. The 
degree of connection between the Upper Floridan aquifer and 
streams decreases east of the Flint River where the overburden 
is thicker. Decreased connectivity between ground and surface 
water is evident from the stream-stage altitudes measured in 
November 2008 east of the Flint River, which are not similar to 
water-level altitudes measured in the Upper Floridan aquifer.

Stream-stage measurements were collected at 111 sites— 
26 U.S. Geological Survey streamgaging sites and 85 additional 
synoptic sites without gages. Streamflow measurements were 
made at 87 of the sites during November 2008 and were used 
to estimate base flow. The measurements indicate that stream 
reaches range from losing up to 10 cubic feet per second to 

gaining up to 4,559 cubic feet per second; five stream reaches 
were determined to be losing stream reaches. Of the 11 stream 
reaches in the Alapaha River subbasin, 7 were dry when 
measured in November 2008.

Introduction
Severe drought and increased groundwater pumping to 

support agriculture during 2007–2008 in south-central and 
southwestern Georgia resulted in record-low groundwater 
levels and streamflow in the lower Chattahoochee–Flint 
(CF) and western and central parts of the Aucilla–Suwanee–
Ochlockonee River (ASO) basins. Documentation of these 
historic hydrologic conditions through measurement of ground-
water levels, stream stage, and streamflow provides essential 
data to help evaluate the effects of climate and groundwater 
pumping on water resources and aquatic biota in the area. 

Because groundwater is the major source of water in the 
basins and the potential exists for pumping-induced stream-
flow reduction that could affect downstream users, a quanti
tative understanding of stream-aquifer relations is essential to 
effectively manage water resources in the lower CF and ASO 
River basins. The U.S. Geological Survey (USGS) conducted 
an investigation to document groundwater levels and stream 
base flow in the lower CF and ASO River basins during 
low-flow conditions in November 2008. These data may be 
used to manage the water supply, protect water quality and 
aquatic habitats, inform recreational users (U.S. Geological 
Survey, 2006), and provide a basis for accurate calibration 
of groundwater-flow models to simulate water-management 
scenarios for the region.
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Purpose and Scope

This report presents groundwater-level, streamflow, 
and stream-stage data collected by the USGS, in November 
2008, within a 21-county area including the lower CF and 
western and central ASO River basins in Georgia (fig. 1). 
During November 3–6, 2008, stream-stage measurements 
were made at 111 sites and streamflow measurements were 
made at 87 of the 111 sites. The other 24 sites had no flow. 
Groundwater-level measurements were made in 376 wells 
during November 1–10, 2008. Data and analyses presented 
in the report include a potentiometric-surface map of the 
Upper Floridan aquifer based on field measurements made in 
November 2008, and a groundwater-seepage map indicating 
reaches where streams gained or lost water or were dry as a 
result of surface-water interaction with the Upper Floridan 
aquifer during November 2008.

Description of the Study Area

The study area is located in the Coastal Plain Physio-
graphic Province in southwestern Georgia (fig. 1). The study 
area includes all or parts of 21 counties in the lower CF River 
basin, and the western and central parts of the ASO River 
basin. The study area contains all or parts of seven Hydrologic 
Unit Code (HUC) subbasins (Seaber and others, 1987; Jones 
and Torak, 2006) in the lower CF River basin (HUCs begin-
ning with 0313) and all or parts of seven HUC subbasins in 
the northern ASO River basin (HUCs beginning with 0311 
and 0312). Although not in the study area, a few groundwater 
levels were measured in wells in HUC 03070104 subbasin of 
the Ocmulgee River basin to better define the potentiometric 
surface of the Upper Floridan aquifer (fig. 1; table 1). The 
study area extends through the Gulf Trough, a northeast-
southwest trending geologic feature composed of fine- 
grained, dense, low-permeability limestone overlain by a thick 
sequence of Oligocene to Miocene sediments (Zimmerman, 
1977). The position of the low-permeability sediments of the 
Gulf Trough next to the high-permeability limestone presents 
a barrier to groundwater flow southeastward in the Upper 
Floridan aquifer (Torak, and others, 2010; fig. 1). The physio
graphy, hydrogeology, and climate of the area are described in 
detail in Torak and Painter (2006). A brief description of each 
is summarized in the following sections.

Physiography 
In the study area, the Coastal Plain Physiographic 

Province is a low-lying karst region that includes the 

Dougherty Plain and Tifton Upland Districts, which are 
separated by the Solution Escarpment (fig. 1; Clarke and Zisa, 
1976; Torak and Painter, 2006). The Dougherty Plain is flat to 
gently rolling and characterized by karst topography including 
internal drainage and limestone dissolution features. Numer-
ous sinkholes commonly form in the area and collect runoff, 
many providing direct recharge to the Upper Floridan aquifer 
(Torak and Painter, 2006). The Solution Escarpment separates 
the Dougherty Plain and Tifton Upland Districts and provides 
as much as 125 feet (ft) of relief forming a topographic and 
surface-water divide between the Flint and Ochlockonee River 
basins (Torak and others, 2010). The Tifton Upland District is 
characterized by high hills and dendritic drainage, resulting in 
relief up to 200 ft (Torak and others, 1996). The Gulf Trough, 
which bisects the Tifton Uplands, extends across most of the 
Coastal Plain of Georgia and consists of fine-grained, dense, 
low-permeability limestone overlain by a thick sequence of 
Oligocene to Miocene sediments (Zimmerman, 1977). 

Table 1.  All or part of the subbasins in the study area of 
south-central and southwestern Georgia.

Hydrologic Unit 
Code

Subbasin name

Ocmulgee River basin

03070104 Lower Ocmulgee River

Aucilla River basin

03110103 Aucilla River
03110202 Alapaha River
03110203 Withlacoochee River
03110204 Little River

Ochlockonee River basin

03120001 Apalachee Bay–St. Marks
03120002 Upper Ochlockonee River
03120003 Lower Ochlockonee River

Chattahoochee–Flint River basin

03130004 Lower Chattahoochee River
03130006 Middle Flint River
03130007 Muckalee–Kinchafoonee Creeks
03130008 Lower Flint River
03130009 Ichawaynochaway Creek
03130010 Spring Creek
03130011 Upper Apalachicola River
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Hydrogeologic setting
The flow system and stream–aquifer 

connection in the study area are controlled 
by geology, hydrologic properties of the 
Upper Floridan aquifer and its confining 
units, precipitation, and pumping. 
Geologic units in the Flint River basin 
northwest and northeast of Lake Seminole 
and in the ASO River basin and hydrologic 
units in the study area are presented in 
figure 2.

Geologic units consist of Coastal 
Plain sediments of Eocene to Holocene 
age, including cross-bedded clayey sand, 
sand, gravel, clay, limestone, dolomite, and 
limestone residuum. Geologic units in the 
Flint River basin in ascending order are the 
Lisbon Formation, Clinchfield Sand, Ocala 
and Suwannee Limestones, undifferentiated 
overburden (residuum), and terrace and 
undifferentiated (surficial) deposits (Torak 
and Painter, 2006; fig. 2). Geologic units in 
the ASO River basin in ascending order are 
the Tallahatta Formation, Lisbon Forma-
tion, Ocala and Marianna Limestones, 
Byram Formation, Suwannee Limestone, 
Hawthorn Group, and terrace and undif-
ferentiated (surficial) deposits (Torak and 
others, 2010; fig. 2).

Hydrologic units in descending 
order are the surficial aquifer system, 
the upper semiconfining unit, the Upper 
Floridan aquifer, and the lower confining 
unit (Torak and Painter, 2006; Torak and 
others, 2010; fig. 2). Weathering and dis-
solution of limestone in the Upper Floridan 
aquifer have created secondary perme-
ability and interconnections with surface 
water. Direct recharge to or discharge 
from the aquifer occurs through karst 
or other erosional features. Many major streams in the area 
have eroded through the overburden and are in direct contact 
with the aquifer. Indirect recharge occurs by vertical leakage 
through the upper semiconfining unit or the surficial aquifer 
system. Groundwater discharges from the Upper Floridan 
aquifer where overlying residuum is thin or absent and where 
the groundwater level (hydraulic head) is higher than the 
stream or lake stage (Torak and Painter, 2006).

Climate 
The study area is characterized by a humid subtropical 

climate, with temperatures and precipitation that vary sea-
sonally and areally across the study area (fig. 1). Based on 

period-of-record (1971–2000) monthly normal temperature 
and precipitation, temperatures generally vary between 

•	 35.1 (January) and 92.5 (July) degrees Fahrenheit (ºF) at 
National Weather Service (NWS) station Albany 3 SE,

•	 39.2 ºF (January) and 92.0 ºF (July) at NWS  
station Colquitt 2 W, 

•	 35.8 ºF (January) and 93.3 ºF (July) at NWS  
station Cordele, and 

•	 38.2 ºF (January) and 90.3 ºF (July) at the NWS  
Tifton Experimental Station (EXP STA). 

Annual precipitation at these same weather stations aver-
ages 53.4, 53.2, 46.2, and 47.0 inches, respectively (table 2; 
National Oceanic and Atmospheric Administration, 2002).
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Previous Investigations

Since 1996, the USGS has conducted numerous inves-
tigations regarding the hydrogeology of the Apalachicola–
Chattahoochee–Flint (ACF) and ASO River basins. Torak 
and McDowell (1996) updated the geohydrology of parts of 
the lower ACF River basin. Mosner (2002) described stream-
aquifer relations and groundwater-level conditions in the lower 
ACF River basin during the drought years of 1999 and 2000 
and computed aquifer contributions to streamflow for specific 
reaches. Jones and Torak (2004) described the geohydrology of 
the area surrounding Lake Seminole in southwestern Georgia 
and simulated the effects of impoundment on groundwater flow 
in the Upper Floridan aquifer. Torak and others (2006) cited 
physical and hydrochemical evidence of hydraulic connection 
between surface and groundwater beneath and around Lake 
Seminole and Jim Woodruff Lock and Dam and documented 
the complex exchange of surface and groundwater between the 
lake, streams, and aquifer. Torak and Painter (2006) described 
the geohydrology of the lower ACF basin in southwestern 
Georgia, northwestern Florida, and southeastern Alabama. 
Jones and Torak (2006) simulated hydrologic conditions and 
variations in the stream-aquifer flow system through a drought-
period irrigation season. Torak and others (2010) investigated 
the geohydrology of the ASO basin in southwest Georgia and 
northern Florida. Torak (2009) reported that groundwater levels 
in the Upper Floridan aquifer throughout the ASO basin are 
affected by variations in climate, groundwater pumping, and 
withdrawal amounts. Williams (2009) described the insights 
gained by using flowmeter logging to identify permeable zones 
within the Suwannee, Marianna, and Ocala Limestones in 
south-central Georgia.

Several potentiometric-surface maps of the Upper 
Floridan aquifer in the study area and adjacent areas have 
been published. Maps include a potentiometric-surface 
map of Georgia and adjacent parts of Alabama, Florida, 
and South Carolina for May–June 1990 (Peck, 1991); a 
potentiometric-surface map for the same area for May 1998 
(Peck and others, 1999); and potentiometric-surface maps 
of the Upper Floridan aquifer in the lower ACF basin for 
October 1999 and August 2000 (Mosner, 2002).

Well- and Stream-Numbering Systems

In this report, wells are identified by a numbering 
system based on USGS topographic maps. In Georgia, each 
7.5-minute topographic quadrangle map has been given a 
number and letter designation beginning at the southwestern 
corner of the State. Numbers increase eastward through 39, 
and letters increase alphabetically northward through “Z” 
and then become double-letter designations “AA” through 
“PP.” The letters “I,” “O,” “II,” and “OO” are not used. Wells 
inventoried in each quadrangle are numbered sequentially 
beginning with “001.” Thus, the third well inventoried in the 
Chattahoochee quadrangle (map 06D) is designated 06D003. 
Surface-water stations are identified by a numbering system 
used for all USGS reports and publications since October 1, 
1950. The station numbers are in downstream order along the 
main channel. All stations on a tributary entering upstream 
from each main channel are listed prior to the station on 
the main channel. Each surface-water station is assigned a 
unique 8 - to 14-digit number. Each station number, such 
as 02351890, begins with the 2-digit identifier “02,” which 
designates it as being a surface-water station, followed by the 
downstream-order number, “351890,” which can range from 
6 to 12 digits.

Methods
Water-level measurements were made in wells open 

to the Upper Floridan aquifer. USGS personnel used steel 
or electric tapes to collect the water-level measurements to 
the nearest 0.01 ft. A pre-established measuring point was 
subtracted from the water level to obtain depth to water 
below land surface. The depth below land surface was then 
subtracted from the land-surface altitude to calculate the 
water-surface altitude. Most land-surface altitudes were 
estimated using topographic maps. As a result, calculated 
values for water-surface altitude are accurate to plus or minus 
(±) 10 ft. Water-level altitudes were contoured to produce a 
potentiometric surface for the Upper Floridan aquifer.

Stream-stage and flow measurements were made using 
traditional USGS methods (Rantz and others, 1982).  Stream-
flow loss or gain was calculated by subtracting an upstream 
flow measurement from a downstream flow measurement. 
The difference is the amount of groundwater discharged to 
the stream along the stream reach. Estimated streamflow data 
typically are accurate to within 5 to 10 percent of actual flows 
(Hirsch and Costa, 2004).
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Hydrologic and Climatic Conditions 
during November 2008

Although a moderate to severe drought persisted across 
southwestern Georgia during much of 2008, by November 
2008 precipitation was in the normal range and only the north-
ern parts of the study area remained abnormally dry (fig. 3; 

Drought Mitigation Center, 2009). From January through most 
of February 2008, the study area was in an extreme to moder-
ate drought. Drought conditions receded northward, out of the 
study area at the end of February until June 2008, when the 
area was once again experiencing moderate to severe drought 
conditions. Most of the study area was abnormally dry from 
the end of August to the end of October 2008, when normal 
conditions returned (fig. 3; Drought Mitigation Center, 2009). 

Figure 3.  Intensity of drought 
�in Georgia for selected months 
in 2008 (modified from Drought 
Mitigation Center, 2009).

January 1, 2008 June 3, 2008

July 22, 2008

April 1, 2008

August 5, 2008 October 7, 2008

November 4, 2008

Figure 3.  Intensity of drought 
in Georgia for selected months 
in 2008 (modified from Drought 
Mitigation Center, 2009).
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Data that represent cumulative departures of rainfall from 
normal rainfall can be used to evaluate trends in rainfall and 
define the long-term rainfall surplus or deficit during a specific 
period. Graphs are derived by adding successive daily values 
for departures from normal daily rainfall. A positive slope 
indicates above-normal rainfall, and a negative slope indicates 
below-normal rainfall. Graphs of cumulative departures from 
normal rainfall for 2003–2008 at three National Oceanic 
and Atmospheric Administraion (NOAA) weather stations 
in the area—Albany 3 SE (GA090140), Bainbridge Inter
national Paper (GA090586), and Tifton Experimental Station 
(GA098703) (fig. 1)—show long-term rainfall declines since 
the beginning of 2006 (fig. 4). By summer 2008, the deficit 
reached a maximum, with departures of 19 inches in July at 
Albany, 37 inches in August at Bainbridge, and 7.7 inches in 
June at Tifton. Rainfall in August was above normal, which 
decreased the cumulative deficit at the three sites. By Novem-
ber 2008, the cumulative deficit was 10 inches at Albany, 
27 inches at Bainbridge, and 2.2 inches at Tifton.

Daily mean groundwater levels throughout most of the 
study area were below long-term median daily levels for 
most of 2008, as shown on hydrographs for wells 09F520 
at Bainbridge in Decatur County, 11K003 south of Albany 
in Dougherty County, and 18H016 at Adel in Cook County 
(fig. 5). At well 15Q016 near Cordele in Crisp County, 
groundwater levels were near long-term median daily levels 
until November 2008 when levels rose slightly above the 
long-term median daily levels. Daily mean groundwater levels 

rose to or above long-term median daily levels by November 
at many locations in the area. The water level in well 09F520 
in Bainbridge, for example, rose to the long-term median daily 
levels in September, remained near the median levels until 
December, and then rose above the long-term median daily 
levels. Conversely, the water level in well 18H016 at Adel has 
been declining since 1967 and has been below the long-term 
median daily levels since the late 1990s.

Discharge in most of the streams in the area was within 
the normal range by November 2008. Discharge was normal 
from December 2007 until about May 2008; then, discharge 
in many streams in the area dropped below the 10th percentile 
during summer 2008. The 7-day average stream discharge 
for 2007 and 2008 compared to historical data for each 
streamgaging site is shown in the hydrographs in figure 6. 
Data are categorized in ranges from “much above normal” 
(90th percentile) to much below normal (10th percentile; 
Knaak and Joiner, 2008). Discharge in most of the streams 
was in the normal range by fall 2008, including at streamgages 
02351890 on Muckalee Creek near Leesburg, 02353400 on 
Pachitla Creek near Edison, 02316000 on the Alapaha River 
near Alapaha, and 02357000 on Spring Creek near Iron City. 
At a few locations, such as streamgage 02349900 on Turkey 
Creek at Byromville in the northern part of the study area, 
record-low discharge measurements were recorded during 
2007 and 2008, and discharge was below normal when 
measurements were made in November 2008. 
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Figure 4.  Cumulative departure from normal (1971–2001) precipitation at National Oceanic and 
Atmospheric Administration Georgia weather stations Albany 3 SE (GA090140), Bainbridge 
International Paper (GA090586), and Tifton Experimental Station (GA098703), 2003–2008. 
(See figure 1 for locations.)

Figure 4.  Cumulative departure from normal (1971–2001) precipitation at National Oceanic 
and Atmospheric Administration Georgia weather stations Albany 3 SE (GA090140), Bainbridge 
International Paper (GA090586), and Tifton Experimental Station (GA098703), 2003–2008. �(See 
figure 1 for locations.)
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Figure 5.  Water levels and long-term daily median statistics for wells 09F520, 11K003,15Q016, 
and 18H016, 2008. (See figure 1 for locations.)
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Figure 5.  Water levels and long-term daily median statistics for wells 09F520, 11K003, 
15Q016, and 18H016, 2008. (See figure 1 for locations.)
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Figure 5.  Water levels and long-term daily median statistics for wells 09F520, 11K003,15Q016, 
and 18H016, 2008. (See figure 1 for locations.)—Continued
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Figure 5.  Water levels and long-term daily median statistics for wells 09F520, 11K003, 
15Q016, and 18H016, 2008. (See figure 1 for locations.)—Continued
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Figure 6.  Seven-day average discharge for U.S. Geological Survey streamgages 02316000,  
02349900, 02351890, 02353400, and 02357000, 2007–2008. (See figure 1 for locations.)

Figure 6.  Seven-day average discharge for U.S. Geological Survey streamgages 
02316000,  02349900, 02351890, 02353400, and 02357000, 2007–2008. (See figure 1 
for locations.)
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Figure 6.  Seven-day average discharge for U.S. Geological Survey streamgages 02316000,  
02349900, 02351890, 02353400, and 02357000, 2007–2008. (See figure 1 for locations.)—Continued  
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Figure 6.  Seven-day average discharge for U.S. Geological Survey streamgages 
02316000,  02349900, 02351890, 02353400, and 02357000, 2007–2008. (See figure 1 
for locations.)—Continued
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Potentiometric Surface 

The potentiometric surface represents the altitude at 
which water would have stood in tightly cased wells if open 
to the Upper Floridan aquifer. The November 2008 potentio
metric-surface map is more detailed than previous maps by 
Peck (1991) and Peck and others (1999) in the southwestern 
and northeastern parts of the study area. Increased detail is due 
to the addition of wells inventoried during studies conducted 
by Torak and Painter (2006) and Williams (2009).

The potentiometric-surface map is used to better under-
stand groundwater flow in the Upper Floridan aquifer. The 
configuration of a potentiometric surface indicates general 
direction of groundwater flow and areas of recharge and 
discharge. Groundwater generally flows southeastward on the 
west side of the Flint River, southwestward on the east side 
of the Flint River, and southward in the eastern part of the 
study area (fig. 7). One of the more prominent features of the 
potentiometric surface is the Gulf Trough, a subsurface feature 
where the hydraulic gradient abruptly steepens. This trough 
feature is indicated by tightly spaced potentiometric contours, 
particularly the 80- to 190-ft contours in the east-central part 
of the map area.

According to Hicks and others (1987) and Torak and 
Painter (2006), many of the major streams in the Albany–
Dougherty County area are incised through the overburden 
into the Upper Floridan aquifer providing a direct connection 
between the streams and the Upper Floridan aquifer. Water is 

discharged from the aquifer through springs that are present 
along or in the streams when the head in the aquifer is greater 
than the altitude of the stream stage, or water from the stream 
recharges the aquifer when the head in the aquifer is less than 
the altitude of the stream stage. The degree of connection 
between the Upper Floridan aquifer and streams decreases 
to the east of the Flint River where the overburden is thicker. 
The decreased connection is evident as stream-stage altitudes 
measured east of the Flint River during November 3–6, 2008, 
are not similar to adjacent groundwater-level altitudes. Of the 
streams that were flowing (not dry), the stream stages were 
up to about 160 ft higher than the groundwater altitudes. To 
the west of the Flint River, the stream stages are coincident 
with the altitudes of the potentiometric surface of the aquifer, 
which indicate a direct connection between the aquifer and 
the streams. The Upper Floridan aquifer discharges to streams 
in most of the area west of the Flint River. This discharge 
is evident on the potentiometric map by the contours that 
“bend” upstream where the contours cross the Flint River in 
Dougherty County near Albany. Several stream reaches in the 
area were losing water at the time when measurements were 
collected. These reaches are on Warrior Creek, Ty Ty Creek, 
Ichawaynochaway Creek, Cooleewahee Creek, Muckaloochee 
Creek, and Muckalee Creek (fig. 7). The potentiometric 
contours “bend” downstream where the contours cross the 
losing reaches that are connected to the Upper Floridan aquifer 
(west of the Flint River) or show no deflection where there is 
no interaction between the stream and the aquifer.
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Figure 7.  Potentiometric surface of the Upper Floridan aquifer in the lower Chattahoochee–Flint 
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Georgia, November 1–10, 2008.
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Stream Base Flow

Streamflow is composed of surface runoff and base flow. 
Stream base flow is the portion of streamflow contributed by 
groundwater discharge. During periods of low precipitation, 
all or most of streamflow is from base flow. Even though 
streamflow in most of the study area was above historic lows 
during November 2008, base-flow conditions were believed 
to prevail, because little to no rainfall occurred within at least 
7 days prior to the measurement period. The hydrograph in 
figure 8 from USGS streamgage 02353400 at Pachitla Creek 
near Edison, Georgia, shows the discharge increasing in 
Pachitla Creek on October 23, peaking on October 26, and 
then decreasing until November 13. Streamflow during the 
period when discharge was nearly level between the two 
rainfall events (November 1–14, 2008) is considered to be  
at or near base flow conditions.

Streamflow measurements were made at 87 stream 
sites in the lower CF and upper ASO River basins during 
November 3–6, 2008 (fig. 9 and Appendix). Base flow was 
calculated by subtracting an upstream streamflow measurement 
from the downstream streamflow measurements along the 
rest of that reach. The difference is an estimate of base flow 
or the amount of groundwater that discharges to the stream 
along a specific stream reach. Negative values represent losing 
stream reaches, where water from the stream is recharging 
the aquifer. During November 3–6, 2008, the estimated 
base flow contributed to stream reaches ranged from losing 
10 cubic feet per second (ft3/s) to gaining 4,559 ft3/s. There 
were five losing stream reaches in the study area during 

this period—the reach between streamgages 02317900 and 
02317920 on Ty Ty Creek lost 8 ft3/s; the reaches between 
streamgages 02317856 on Town Creek, 02317866 on Horse 
Creek, and 02317874 on Warrior Creek lost 2 ft3/s;  the reach 
between streamgages 02353460 and 02353500 on Ichaway
nochaway Creek lost 9 ft3/s; the reach between streamgages 
02352970 and 02352980 on Cooleewahee Creek lost 4 ft3/s; 
and the reach between streamgages 02351800 on Mucka
loochee Creek, 02351700 on Muckalee Creek, and 02351890 
on Muckalee Creek lost 10 ft3/s. Stream-reach losses ranged 
from 2 ft3/s to 10 ft3/s, which in a few cases may be within the 
accuracy of the streamflow measurement. Streamflow measure-
ments typically have errors between 5 and 10 percent (Hirsch 
and Costa, 2004). Of the 87 stream reaches measured, 24 were 
dry. All but two of the dry reaches are east of the Flint River 
where little or no direct connection occurs between streams 
and the Upper Floridan aquifer. Most of the dry stream reaches 
are headwater reaches, except in the Alapaha River subbasin 
in the northeastern part of the study area where the majority of 
reaches were dry. Mosner (2002) reported seven losing reaches 
in seven streams during October 1999—a period when south
western Georgia had severe drought conditions, and record-low 
streamflow and groundwater levels were measured (Barber and 
Stamey, 2000; Drought Mitigation Center, 2009). The seven 
losing streams were the Flint River, Muckalee Creek, Kincha-
foonee Creek, Chickasawhatchee Creek, Ichawaynochaway 
Creek, Carter Creek, and Spring Creek. Even though all seven 
stream reaches were measured during both October 1999 and 
November 2008, four of the seven losing reaches had returned 
to gaining reaches by November 2008.

Data collected
November 3

Blank 
where

data are
missing

EXPLANATION

Figure 8.  Daily mean discharge for U.S. Geological Survey streamgage 02353400 on Pachitla 
Creek near Edison, Georgia, October 15 to November 15, 2008. (See figure 1 for location.)

Figure 8.  Daily mean discharge for U.S. Geological Survey streamgage 02353400 on Pachitla 
Creek near Edison, Georgia, October 15 to November 15, 2008. (See figure 1 for location.)
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Figure 9.  Discharge measurements made in the lower Chattahoochee–Flint River basin and western 
and central parts of the Aucilla–�Suwanee–Ochlockonee River basin, Georgia, showing gaining, losing, 
and dry stream reaches during November 3–6, 2008.
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Summary
During most of 2008, southwestern Georgia had 

moderate to severe drought conditions. Graphs of cumulative 
departure from normal rainfall during 2003–2008 show a long-
term rainfall deficit from the beginning of 2006. Groundwater 
levels were below normal throughout most of 2008 and, in 
some cases, until December 2008 (for example, well 11K003 
south of Albany). At some locations, however, groundwater 
levels rose to median daily levels by November. Flow in 
most of the streams in the area also had risen into the normal 
range by November. Streamflow was normal from December 
2007 until about May 2008, after which flow in many area 
streams dropped below the 10th percentile. Flow in most of 
the streams was back in the normal range by September 2008. 
At a few locations, record-low streamflow measurements were 
recorded during 2007 and 2008, and were below normal when 
measurements were made in November 2008. 

The potentiometric surface of the Upper Floridan aquifer 
was constructed using water-level measurements collected 
in 21 counties from 376 wells during November 1–10, 2008. 
The potentiometric surface indicates that groundwater in the 
study area generally flows to the south and toward the streams 
except where stream reaches discharge to the Upper Floridan 
aquifer. One of the more prominent features of the potentio-
metric surface is the Gulf Trough, an area where the hydraulic 
gradient abruptly steepens. The degree of direct connection 
between the Upper Floridan aquifer and the streams decreases 
east of the Flint River where the overburden is thicker. 
The decreased connection is evident from the stream-stage 
altitudes measured in November 2008 east of the Flint River, 
which were not equivalent to water-level altitudes in the 
Upper Floridan aquifer.

Streamflow was used to estimate base flow in November 
2008, because little to no rainfall occurred prior to when 
measurements were made. The measurements indicate that the 
estimated base flow contributed to stream reaches ranged from 
losing 10 cubic feet per second (ft3/s) to gaining 4,559 ft3/s. 
Stream-reach losses ranged from 2 ft3/s to 10 ft3/s. Most of the 
stream reaches in the Alapaha River subbasin were dry when 
measured in November 2008.
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22    Stream Base Flow and Potentiometric Surface of the Upper Floridan Aquifer in South-Central and SW GA, November 2008
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